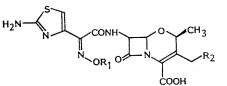

SYNTHESIS OF A NOVEL 2β -METHYL-1-OXACEPHALOSPORIN, OCP-9-176[†]

Sir:

As reported in our previous report¹⁾ 7α benzoylamino-2-methyl-1-oxacephems were synthesized from 6-APA through (3R,4S) phenyloxazolinoazetidinone.^{2,3)} We synthesized the 2α methyl and 2β -methyl isomers stereoselectively, with variation of the C-3 side chains.^{4,5)} We wish to report herein the synthesis of a novel 2β methyl-1-oxacephalosporin, OCP-9-176 (1) and its related compounds from 2:⁴⁾ 7α -benzoylamino- 2β -methyl-3-(*N*-methyl)tetrazoylthiomethyloxacephem. Compound 1 shows a potent antibacterial activity.


Compound 2 was reduced with zinc powder⁶⁾ in the presence of ammonium chloride and thiourea in DMF to give exomethylene compound 3 (95%, yield). Debenzoylation of 3 with PCl₅ and MeOH,⁷⁾ and Schiff base formation of the resulting α -amino group with 3,5-di-*tert*-butyl-4-hydroxybenzaldehyde⁶⁾ followed by oxidation with nickel peroxide⁶⁾ afforded quinomethine intermediate 4. Stereoselective reduction of 4

[†] Presented in part at the 27th Interscience Conference on Antimicrobial Agents and Chemotherapy, New York, Oct. $4 \sim 7$, 1987.¹⁾

The code number in Merck Sharp & Dohme Research Laboratories is L-656,575.

Table 1. MICs (μ g/ml).^a

Compound	R ₁	\mathbf{R}_2	S.a- 1 ^b	S.a-2	E.c-1 ^b	E.c-2	E.c-3°	K.p	P.v	M.m°	C.f°	P.a-1°	P.a-2
OCP-9-176 (1)	C(CH ₃) ₂ COOH	-s	3.13	0.78	0.39	0.20	0.39	0.20	0.10	0.39	0.78	1.56	0.78
8	CH_3	-s	0.20	0.10	0.20	0.05	0.20	0.05	0.39	0.39	1.56	12.5	6.25
9	CH ₂ COOH	-s-	1.56	0.78	0.20	0.025	0.39	0.05	0.05	0.20	3.13	1.56	1.56
10	C(CH ₃) ₂ COOH		12.5	6.25	0.78	0.20	12.5	0.39	0.20	6.25	12.5	12.5	12.5
Ceftazidime			6.25	3.13	0.20	0.20	12.5	0.20	0.05	12.5	50	1.56	0.78

^a MICs were determined by a 2-fold dilution in Mueller-Hinton agar; inoculum of 10^e cfu.

^b Penicillinase producer.

^e Cephalosporinase producer.

Organisms abbreviations: S.a-1, Staphylococcus aureus 606; S.a-2, S. aureus Smith; E.c-1, Escherichia coli W3630 RGN14; E.c-2, E. coli NIHJ JC-2; E.c-3, E. coli 255; K.p, Klebsiella pneumoniae PCI 602; P.v, Proteus vulgaris GN76; M.m, Morganella morganii 1510; C.f, Citrobacter freundii GN346; P.a-1, Pseudomonas aeruginosa M-0148; P.a-2, P. aeruginosa IAM 1007.

VOL. XLI NO. 8

with tetraethylammonium borohydride followed by treatment with Girard T reagent gave 7β amino compound 5 in 35% yield from 3. After the amino group of 5 was protected by a formyl group with O-formyl-2,4,5-trichlorophenol (79%, yield), the resulting formamide was reacted with phenylselenyl chloride,10) followed by oxidation with peracetic acid to give a versatile intermediate, 2β -methyl-3-chloromethyl-1-oxacephem 6 in 52% yield. Deformylation of 6 with HCl, acylation of the resulting 7β -amino compound with 2-(2-tritylaminothiazol-4-yl)-2-(1-diphenylmethoxycarbonyl - 1 - methylethoxy)iminoacetic acid¹¹⁾ by using POCl₃ and pyridine,¹²⁾ and followed by the successive treatment with 1-methyl-4(1H)-pyridinethione¹³⁾ in DMF afforded 7 in 85% yield. Compound 7 was deprotected with TFA and anisole, and the crude antibiotic was purified with a column of Diaion HP-20 to give 1 in 65% yield.

Compound 1 was isolated as the sodium salt in an amorphous powder: MP 175~180°C (dec); $[\alpha]_{25}^{25}-48.7^{\circ}$ (c 1.88, H₂O); NMR (D₂O) δ 1.45 (3H, s), 1.47 (3H, s), 1.49 (3H, d, J=7.0 Hz), 3.80 and 4.80 (2H, ABq, J=17 Hz), 4.19 (3H, s), 4.73 (1H, q, J=7.0 Hz), 5.17 (1H, d, J=3.5 Hz), 5.58 (1H, d, J=3.5 Hz), 7.00 (1H, s), 7.70 and 8.40 (4H, ABq, J=6.2 Hz); IR(KBr) cm⁻¹ 3340, 1775, 1730, 1650.

Alkoxime homologs (8 and 9) of 1 and the pyridiniummethyl derivative (10) at C-3 were similarly prepared from the deformylated derivative of 6. Their in vitro antibacterial activities are shown in Table 1. Methoxime compound showed broad spectrum against Gram-positive and Gram-negative bacteria but the activity against Pseudomonas aeruginosa was lower than that of ceftazidime. The introduction of carboxylic group in the alkoxime moiety (1 and 9) clearly increased the anti-pseudomonal activity. Among compounds 1, 8 and 9, gemdimethylcarboxymethoxime compound 1 showed the best anti-pseudomonal activity which is comparable to that of ceftazidime. Interestingly, the 2β -methyl-1-oxa counterpart (10) of ceftazidime was inferior to ceftazidime and 1. Compound 1 is more active than ceftazidime against *Staphylococcus* strains and β -lactamaseproducing Gram-negative bacteria. It is noteworthy that the 2β -methyloxacephalosporins possess high antibacterial activity, while 2-nonmethyloxacephalosporin aminothiazole con-

geners¹⁴⁾ have unremarkable activity. Namely 2-non-methyl analog of OCP-9-176, prepared in our laboratory showed low degree of the activity against cephalosporinase producing Gram-negative bacteria: Escherichia coli 255 (MIC 6.25 µg/ml), Morganella morganii 1510 $(3.13 \,\mu g/ml)$ and Citrobacter freundii GN346 (50 μ g/ml). Thus, we demonstrated that the introduction of 2β -methyl group on 1-oxacephems not only increased the intrinsic activity, but the activity against β -lactamase producing strains as well. In conclusion, OCP-9-176 (1) having a well-balanced spectrum and β -lactamase stability was selected for further evaluations.15,16) The structure-activity relationships of 2-methyl-1-oxacephalosporins will be reported in details elsewhere.

> Seiji Shibahara Tsuneo Okonogi Yasushi Murai Toshiaki Kudo Takashi Yoshida Shinichi Kondo

Pharmaceutical Research Laboratories, Meiji Seika Kaisha, Ltd., Morooka-cho, Kohoku-ku, Yokohama 222, Japan

BURTON G. CHRISTENSEN

Merck Sharp & Dohme Research Laboratories, Rahway, New Jersey 07065, U.S.A.

(Received February 4, 1988)

References

- SHIBAHARA, S.; T. OKONOGI, Y. MURAI, T. YOSHIDA, S. KONDO & B.G. CHRISTENSEN: Synthesis and *in vitro* antibacterial activity of OCP-9-176, a potent 2-methyloxacephalosporin (2MO). Program and Abstracts of the 27th Intersci. Conf. on Antimicrob. Agents Chemother., No. 647, p. 209, New York, Oct. 4~7, 1987
- HAMASHIMA, Y.; S. YAMAMOTO, S. UYEO, M. YOSHIOKA, M. MURAKAMI, H. ONA, Y. NISHI-TANI & W. NAGATA: Synthetic studies on βlactam antibiotics. 13. Transformation of 6epipenicillins to 2R-{(1S,5R)-2-oxa-6-oxo-4,7diazabicyclo[3.2.0]hept-3-en-7-yl}-3-methylbut-3enoates. Tetrahedron Lett. 1979: 2595~2598, 1979

- BUSSON, R.; E. ROETS & H. VANDERHAEGHE: Circular dichroism of monocyclic β-lactams. J. Org. Chem. 43: 4434~4437, 1978
- 4) SHIBAHARA, S.; T. OKONOGI, Y. MURAI & B. G. CHRISTENSEN: Synthesis of novel 2-methyl-1oxacephalosporins: Synthesis of 2-methyl-3noroxacephems. Tetrahedron Lett., in preparation
- SHIBAHARA, S.; T. OKONOGI, Y. MURAI, S. KONDO & B. G. CHRISTENSEN: Synthesis of novel 2-methyl-1-oxacephelosporins: Synthesis of 2-methyl-3 - (substituted)methyloxacephems. Tetrahedron Lett., in preparation
- OCHIAI, M.; O. AOKI, A. MORIMOTO, T. OKADA & H. SHIMAZU: Reduction of cephalosporanic acids with chromium (II) salts: Synthesis of 3methylene cephem derivatives. J. Chem. Soc. Chem. Commun. 1972: 800~801, 1972
- CHAUVETTE, R.; P. A. PENNINGTON, C. W. RYAN, R. D. G. COOPER, F. J. JOSE, I. G. WRIGHT, E. M. VAN HEYNINGEN & G. W. HUF-FMAN: Chemistry of cephalosporin antibiotics. XXI. Conversion of penicillins to cephalexin. J. Org. Chem. 36: 1259~1267, 1971
- YANAGISAWA, H.; M. FUKUSHIMA, A. ANDO & H. NAKAO: A novel general method for synthesizing 7α-methoxycephalosporins. Tetrahedron Lett. 1975: 2705~2708, 1975
- 9) NARISADA, M.; T. YOSHIDA, H. ONOUE, M. OHTANI, T. OKADA, T. TSUJI, I. KIKKAWA, N. HAGA, H. SATOH, H. ITANI & W. NAGATA: Synthetic studies on β -lactam antibiotics. Part 10. Synthesis of 7β -[2-carboxy-2-(4-hydroxy-phenyl)acetamido] - 7α - methoxy - 3 - [[1 - methyl-1*H*-tetrazol-5-yl)thio]methyl]-1-oxa-1-dethia-3-cephem-4-carboxylic acid disodium salt (6059-S) and its related 1-oxacephems. J. Med. Chem. 22: 757~759, 1979

- AOKI, T.; T. KONOIKE, H. ITANI, T. TSUJI, M. YOSHIOKA & W. NAGATA: New route to 3-(substituted)methyl 1-oxa- and (1-thia)cephems from 3-exomethylene intermediates via sulfenyl chloride adducts. Tetrahedron 39: 2515~2526, 1983
- O'CALLAGHAN, C. H.; D. G. H. LIVERMORE & C. E. NEWALL (Glaxo Group): Cephalosporin antibiotics. Ger. Offen. 2,921,316, Dec. 6, 1979
- 12) GREENSTEIN, J. P. & M. WINITZ (Ed.): Chapter
 10: Chemical procedures for the synthesis of peptides. Section 34: Phosphorus oxychloride method. In Chemistry of the Amino Acids. Vol. 2. pp. 1006~1011, John Wiley & Sons, Inc., New York, 1961
- JONES, R. A. & A. R. KATRITZKY: Tautomeric pyridines. Part I. Pyrid-2- and -4-thione. J. Chem. Soc. 1958: 3610~3613, 1958
- 14) NAGATA, W.; M. NARISADA & T. YOSHIDA: 1. Partial synthesis of nuclear analogs of cephalosporins. In Chemistry and Biology of β -Lactam Antibiotics, Volum 2. Nontraditional β -Lactam Antibiotics. pp. 1~98, Eds., R. B. MORIN & M. GORMAN, Academic Press, New York, 1982
- 15) WEISSBERGER, B.; G. K. ABRUZZO, R. A. FROM-TLING, M. E. VALIANT, D. L. SHUNGU & H. H. GADEBUSCH: L-656,575 (OCP-9-176): A novel oxacephem. *In vitro* activity against aerobic and anaerobic clinical bacterial isolates. J. Antibiotics 41: 1130~1136, 1988
- 16) GILFILLAN, E. C.; B. A. PELAK, R. A. FROM-TLING, J. BLAND, S. HADLEY & H. H. GADE-BUSCH: L-656,575 (OCP-9-176): A novel oxacephem. Pharmacokinetics and experimental chemotherapy. J. Antibiotics 41: 1137~ 1141, 1988